
128.trade: A Smart-Contract Callable Trading Engine
for Any Chain

128.trade Team

November 2025

Abstract

Decentralised Finance (DeFi) has grown into a multi-chain ecosystem of programmable
financial primitives, yet high-performance trading engines, centralised or decentralised, re-
main isolated from smart contracts and inaccessible as callable infrastructure. This paper
introduces 128.trade, the first smart-contract callable trading engine designed for any
blockchain, enabling CEX-grade spot and perpetual execution to be invoked directly from
on-chain applications without bridging or network switching. By combining a determinis-
tic CLOB engine, a secure cross-chain oracle–relayer gateway, and an asset-mapping frame-
work that unifies liquidity across chains, 128.trade transforms trading from an isolated
venue into a programmable primitive for the entire DeFi stack. This integration opens a new
design space for vaults, agents, routers and structured products, establishing a cross-chain
execution layer that expands the reach, composability and performance of decentralised
markets.

1 Introduction
Decentralised Finance (DeFi) now spans automated market makers, on-chain orderbooks, per-
petual derivatives, cross-chain bridges, and strategy protocols. Despite this breadth, a funda-
mental limitation persists: no high-performance trading engine is directly callable by
smart contracts, nor is there a mechanism for cross-chain programmable access to
deep liquidity. Existing trading venues, whether decentralised (e.g., Hyperliquid, Aster) or
centralised (e.g., Binance, Bybit), remain operationally isolated and cannot be integrated as
programmable components within DeFi applications.

This disconnect imposes structural constraints on what DeFi can build. Smart contracts
cannot open or manage positions on high-performance venues, cannot access unified liquidity
beyond their native chain, and cannot compose trading logic into higher-order financial prim-
itives. As a result, trading, one of the most fundamental financial operations, remains external
to DeFi’s programmable architecture.

1.1 Structural Problems in Today’s DEX Architectures
Across contemporary decentralised exchange architectures, three structural limitations con-
sistently emerge:

1. Fragmented Liquidity and Execution Environments. Each chain hosts its own liq-
uidity pools and orderbooks. Pricing, depth, and execution quality vary across networks,
and no mechanism exists for smart contracts to access deep liquidity outside their native
chain.

2. Non-Programmability of High-Performance Engines. The most efficient trading
engines, CEX-grade or DEX-grade CLOB systems, are not exposed as callable endpoints.

1



They cannot be invoked by arbitrary smart contracts, preventing trading from function-
ing as a composable, on-chain primitive.

3. Chain-Local Execution without Cross-Chain Workflow Support. Existing DEXes
operatewithin single-chain execution environments. Multi-chain strategies requireman-
ual bridging or off-chain orchestration, blocking the emergence of cross-chain trading
automation or integrated DeFi–DEX applications.

These are structural issues: they arise from architectural boundaries, not from particular
implementations.

1.2 Evolution of Decentralised Exchange Architectures
The trajectory of DEX design reflects successive attempts to address liquidity and execution
constraints:

• DEX 1.0 — Automated Market Makers (AMMs). Enabled permissionless swaps but
suffer from slippage, impermanent loss, and limited expressiveness for derivatives or
advanced order logic.

• DEX 2.0 — On-chain Orderbooks and Perpetual Engines. Achieved significant
improvements in performance and capital efficiency. However, these systems remain
chain-bound, offer non-shared liquidity, and cannot be invoked by arbitrary smart con-
tracts.

Despite their contributions, both generations share a critical limitation: they treat trading
engines as venues, rather than as callable infrastructure. Consequently, DeFi lacks a
mechanism to integrate high-performance execution into its programmable and composable
financial stack.

1.3 Why Smart-Contract Callability Matters
Smart-contract callability marks a category shift in how trading infrastructure can be con-
sumed. If a high-performance engine were callable:

• DeFi protocols could embed spot, perpetual, or strategy execution directly into on-chain
logic.

• Aggregators, vaults, structured-product protocols, and on-chain agents could access
deep liquidity without bridging or network switching.

• High-performance DEX engines would no longer be isolated venues, but programmable
execution modules integrated into the broader DeFi ecosystem.

In short, smart-contract callability connects DeFi with CEX-grade and advanced DEX-
grade performance, unlocking an execution model that existing systems cannot support.

1.4 Our Solution: A Smart-Contract Callable Trading Engine Accessi-
ble from Any Chain

128.trade introduces the first trading engine designed from inception to be callable by smart
contracts across heterogeneous chains. The system consists of a deterministic, high-performance
matching engine coupled with a cross-chain oracle–relayer gateway that transports requests
and delivers verifiable execution results back to the originating chain.

This architecture provides three key properties:

2



1. High-performance deterministic execution for spot and perpetual markets, with
auditability and multi-node consensus.

2. Programmable trading liquidity, allowing any contract on any supported chain to
open positions, place orders, subscribe to vaults, or execute strategies.

3. Cross-chain accessibility, enabling protocols to integrate trading operations without
bridging assets or leaving their native execution environment.

This paper contributes:

1. The design of a smart-contract-callable trading engine capable of CEX-grade execu-
tion and deterministic state transitions.

2. A cross-chain oracle–relayer gateway supporting secure request forwarding, permis-
sionless callbacks, and liveness guarantees.

3. An asset-mapping and settlement framework enabling shared liquidity across het-
erogeneous chains.

4. A roadmap toward verifiable execution, including TEE attestation and zero-knowledge
proof generation for state transitions.

Beyond these technical contributions, 128.trade aims to connect high-performance DEX in-
frastructure with the programmable composability of DeFi, transforming trading from an iso-
lated venue into a shared execution layer. This integration opens the path toward a broader
vision: the convergence of liquidity, performance, and programmability across all chains, a
foundation for the next generation of decentralised financial systems.

2 Vision

2.1 The Name and Its Significance
The name 128.trade was chosen with deliberate intent. It draws inspiration from Mas-
sachusetts Route 128 (commonly “Route 128”), the highway encircling the greater Boston area
that evolved from a regional transportation beltway into a symbol of technological progress,
industrial clustering, and economic transformation. Once an ordinary ring road, Route 128
became the backbone of what was later called “America’s Technology Highway,” hosting one
of the earliest and most influential high-technology ecosystems in the United States.

Historically, Route 128 did far more than shorten commutes. It connected research institu-
tions, emerging technology companies, and industrial hubs, enabling knowledge flow, resource
sharing and innovation at unprecedented scale. As laboratories, startups, venture investors
and engineering talent concentrated along the corridor, the region shifted from a disparate set
of towns into a coherent innovation ecosystem. Infrastructure catalysed economic behaviour:
connectivity fostered collaboration; shared access enabled new industries; and the network
itself reshaped the technological landscape of Massachusetts.

This history captures three principles foundational to our vision:

• Connectivity. Route 128 physically connected nodes that once existed in isolation.
In doing so, it allowed information, talent and resources to flow in ways previously
impossible.

• Ecosystem Formation. The corridor did not merely host activity; it enabled the emer-
gence of an integrated technological ecosystem, where individual components—research
centres, business parks, industry groups—could interoperate and reinforce one another.

3



Figure 1: Massachusetts Route 128

• Transformation. Infrastructure, once deployed, altered the economic and cultural tra-
jectory of an entire region. It shifted what could be built, how enterprises could grow
and what forms of innovation were feasible.

We view 128.trade through the same lens. Our goal is to build an infrastructure corridor
for decentralised finance: not one carrying cars, but one carrying liquidity, state transitions,
cross-chain execution and programmable trading workflows. In today’s multi-chain environ-
ment, trading engines, liquidity pools, protocols and assets exist as isolated “towns” separated
by chain boundaries, execution silos and incompatible interfaces. By providing a unified access
layer and a callable high-performance trading engine, 128.trade aims to link these previously
disconnected components into a coherent, interoperable financial ecosystem.

Just as Route 128 enabled the rise of a high-technology economy by connecting institutions
and industries, 128.trade aspires to enable a high-functioning trading economy in DeFi—one
in which chains, protocols and liquidity sources interoperate seamlessly, and where compos-
able trading becomes a foundational primitive for the next generation of decentralised finance.

2.2 Our Vision for the Future
Our long-term vision is to establish a programmable trading infrastructure layer that
underpins all of DeFi across all chains. This layer transforms trading from an isolated
venue-level activity into a shared, permissionless and composable execution fabric, accessible
to any protocol, on any chain, at any time. Within this vision:

• Deep liquidity becomes universally accessible. Smart contracts on any supported
chain can call the 128.trade engine directly, accessing liquidity and execution quality
traditionally confined to specialised high-performance venues. Liquidity is no longer
siloed by chain boundaries, but forms a shared resource across the ecosystem.

• Every tradable object becomes a programmable financial primitive. Spot tokens,
perpetual positions, vault shares and strategy outputs can be represented, transferred,
composed and settled across chains with deterministic semantics. Assets evolve from
chain-local representations into interoperable primitives that participate in a unified fi-
nancial substrate.

4



• Contracts become the primary economic agents. Through standardised gateway
interfaces, smart contracts themselves can initiate, manage and automate trading work-
flows—opening positions, executing hedges, rebalancing portfolios or constructing struc-
tured strategies. Trading becomes as natively programmable as swaps, lending or stak-
ing.

• Trading integrates as a plug-and-play primitive for every protocol. Aggregators,
fund managers, structured-product protocols, automated agents and routers can incor-
porate the 128.trade engine as a backend module—much like protocols today integrate
oracles, data feeds or messaging layers. The engine becomes an infrastructural compo-
nent rather than a venue.

In essence, we envision 128.trade as the connective tissue of decentralised markets: an ex-
ecution layer that unifies chains, assets and protocols into a coherent, high-performance and
interoperable financial ecosystem. By enabling composable access to deep liquidity and deter-
ministic execution across chains, 128.trade aims to provide the foundational infrastructure for
the next generation of programmable finance.

3 Architecture Overview
This section presents a high-level overview of the 128.trade architecture. The system is
structured around two foundational modules—(i) the Trading Engine, which serves as the de-
terministic execution layer, and (ii) the Oracle Services module, which forms the access and
cross-chain messaging layer. Together, these layers enable two complementary modes of in-
teraction: high-performance API access and chain-agnostic smart-contract programmability.
This duality allows 128.trade to operate simultaneously as a next-generation trading venue
and as a universal execution primitive for DeFi.

3.1 Core Modules
Trading Engine (Execution Layer). At the core of the architecture is a high-performance
central-limit-order-book (CLOB) style engine capable of deterministic matching, margining,
funding, liquidations and state transitions. The engine exposes standard low-latency APIs
(REST, WebSocket or equivalent), enabling integration patterns familiar to high-performance
trading venues. Applications, market makers, automation systems or exchanges can place and
cancel orders, open and close positions, and query market or account state directly. This mode
delivers CeFi-grade throughput and serves users who require real-time execution, algorithmic
trading or direct venue connectivity.

Oracle Services (Access&Messaging Layer). In parallel, the 128.trade architecture pro-
vides a trust-minimised cross-chain access layer that makes the trading engine callable from
any smart contract. Gateway contracts deployed on supported chains expose functions such
as requestPlaceOrder, requestOpenPosition or queryPosition. These calls are ob-
served by an off-chain relayer network, which packages and forwards the requests to the en-
gine. After execution, the relayers return results, together with threshold signatures, TEE at-
testations or future proof systems, via callbacks to the originating chain. This module elevates
the trading engine from an isolated venue into a composable backend service, enabling trad-
ing to be invoked programmatically across heterogeneous chains without bridging or network
switching.

5



3.2 Dual Service Modes
A defining feature of 128.trade is that the same deterministic engine and unified liquidity
pool are accessible through two distinct service modes:

Mode 1 — Direct API Access (“Engine-Native”). This mode provides full-performance
venue-style interaction for high-throughput clients. It is optimal for traders, exchanges, liq-
uidity managers and automation systems that require tight latency and granular execution
control. It reflects the engine’s role as a high-performance trading venue.

Mode 2—Oracle-Based Smart-ContractAccess (“Any-ChainProgrammability”). This
mode enables any smart contract on any chain to access the engine as a programmable primi-
tive. Trading operations—spot orders, perpetual positions, vault subscriptions or strategy ex-
ecution—can be initiated entirely on-chain and resolved via verifiable callbacks. It reflects the
engine’s role as a composable execution layer for DeFi.

These dual modes demonstrate a key property of the system: one engine, two access paths,
shared liquidity, different consumers. 128.trade thus serves both CeFi-level throughput and
DeFi-level composability, positioning it as a universal trading infrastructure layer rather than
a single-venue DEX.

3.3 End-to-End System Flows
The two interaction pathways operate as follows.

Direct Engine Access.

1. A client connects to the engine’s API interface.

2. It issues commands such as placeSpotOrder, placePerpOrder, cancelOrder, or
openPosition.

3. The engine processes the request through matching, risk checks, margin accounting,
funding and settlement.

4. A synchronous or asynchronous response is returned with execution results, identifiers
and updated state.

Smart-Contract Access via Oracle Services.

1. A contract on chainX calls a gateway function (e.g., requestOpenPosition(params)).

2. The gateway emits an event encoding request metadata.

3. Relayers observe the event and submit the request to the engine.

4. The engine processes the request deterministically and outputs the result.

5. Relayers return the result, signed or accompanied by proof data, via a callback (e.g.,
callbackOnOpenPosition(result, sig)).

6. The gateway verifies the proof or signature, applies idempotency checks andmaterialises
engine-native state on-chain (e.g., minting a position NFT or recording an order ID).

This pathway allows smart contracts on any chain to access 128.trade natively, with-
out bridging assets or changing networks, thereby enabling fully programmable cross-chain
trading workflows.

6



3.4 Key Architectural Considerations
• Deterministic Execution. The engine operates as a deterministic state machine, en-
abling auditability, replayability and verifiable state transitions.

• Secure Gateway Semantics. Gateway contracts ensure safe request/response handling
through signature validation, proof verification, replay protection and strict idempo-
tency.

• RobustCross-ChainMessaging. The relayer network handles asynchronous requests,
multiple-chain monitoring and verifiable callback delivery, forming a reliable messaging
substrate.

• Asset Mapping. Engine-native objects such as perpetual positions or vault shares can
be represented as on-chain tokens or NFTs, enabling composable use across chains.

• Cross-Chain Composability. Protocols can integrate trading directly into higher-
level logic—automated hedging, strategy rebalancing or multi-chain structured prod-
ucts—treating 128.trade as a programmable execution layer.

4 Trading Engine
The core of 128.trade is its Trading Engine, a high-performance, deterministic execution
environment that supports spot markets, perpetual contracts, hierarchical accounts and sub-
accounts, and verifiable state transitions. While the design draws inspiration from modern
high-performance venues such as Hyperliquid and Aster, the engine extends these paradigms
with a Byzantine-Fault-Tolerant (BFT) node network, deterministic audit logs, and a progres-
sive roadmap toward zero-knowledge verification of execution.

4.1 Accounts, Sub-Accounts, and Market Support
The engine supports spot and perpetual markets and provides a hierarchical account structure.
Sub-accounts allow for logical separation of strategies or risk pools under a master account.
Clients may:

• place or cancel spot orders,

• open or close perpetual positions,

• query market, account, or position states,

• execute algorithmic or automated trading strategies.

These capabilities are available uniformly regardless of how a request enters the engine
(API or on-chain), ensuring consistent semantics across access modes.

4.2 Request Ingestion and Authentication
Although Section 3 describes the two high-level access modes (direct API access and oracle-
based contract access), the Trading Engine itself abstracts over these differences. Internally,
every action is processed as a canonical engine request. The ingestion pipeline verifies re-
quest provenance, authenticity, and sequencing through two complementary validation mech-
anisms:

7



API-OriginRequests (Signature-BasedAuthentication). Clients integrating via REST/WebSocket
must sign each operation using registered keypairs. The engine validates:

• request signatures and key ownership,

• nonces and replay protection,

• account-level permissions and role scopes,

• rate limits and throttling rules.

Only authenticated requests enter the engine’s canonical request queue.

On-Chain-OriginRequests (Gateway-ProvenanceVerification). Requests submitted via
gateway contracts undergo an alternative verification pipeline. The engine validates:

• the gateway contract address and chain identifier,

• block-header inclusion or light-client verification of emitted gateway events,

• relayer signature bundles or TEE attestations,

• canonical encoding of parameters and idempotency markers.

This ensures that cross-chain requests reflect genuine on-chain intent and prevents forged or
replayed messages.

UnifiedRequestQueue. After authentication, all requests—API or on-chain—enter the same
deterministic request queue. This guarantees that:

• identical execution logic applies to both modalities,

• liquidity and state transitions are fully shared,

• no ordering or settlement differences arise between access paths.

4.3 BFT Multi-Node Network and Deterministic Execution
To provide decentralised integrity and auditability, the Trading Engine executes within a dis-
tributed BFT network of matching/risk nodes. Each state transition (order placement, match-
ing, fills, margining, funding payments, liquidations) is processed deterministically and com-
mitted to an append-only execution log. Because the engine is deterministic, any auditor can
replay the log from genesis and reconstruct the full state exactly.

This deterministic audit trail is fundamental for transparency, interoperability and eventual
zero-knowledge verification.

4.4 Enhancement Roadmap: TEE and ZK Proofs
The engine supports a long-term trust-minimisation trajectory:

Phase 1: TEE-Hardened Execution. Matching nodes may run inside hardware-secured
TEEs. Remote attestation allows the Oracle Services module and external verifiers to confirm
that the correct engine binary and configuration are executing.

8



Phase 2: ZK-Proof Generation. Over time, the engine will output zero-knowledge proofs
for each batch of trades, demonstrating that:

“Given the previous state and the submitted orders, the new state was computed
exactly according to public rules.”

Such proofs enable external systems, including on-chain contracts, to verify correctness with-
out trusting operator nodes.

4.5 Risk Engine, Liquidation, and Auditability
The risk module continuously evaluates each account’s collateral ratio, exposure, leverage
and funding accruals. When thresholds are breached, deterministic liquidation procedures are
triggered and committed to the execution log. Because the log is append-only and replayable,
it supports:

• forensic analysis,

• regulatory or protocol-level audits,

• state reconstruction by new nodes,

• verifiable cross-chain settlement via Oracle Services.

5 Oracle Services
TheOracle Servicesmodule constitutes the access and cross-chainmessaging layer of 128.trade.
Because smart contracts cannot interact directly with an off-chain high-performance engine,
this module provides the infrastructure required to transport requests from heterogeneous
chains to the Trading Engine and to return authenticated, verifiable execution results back
on-chain. It consists of four coordinated subcomponents, gateway contracts, a decentralised
relayer network, callback and proof-verification logic, and the asset-mapping interface—which
together expose the engine as a contract-callable execution primitive for the multi-chain DeFi
ecosystem.

5.1 Overview and Design Goals
The Oracle Services layer is designed around four primary goals:

• Any-chain programmability. Smart contracts on heterogeneous chains must be able
to invoke the Trading Engine as if it were a native module, without introducing new
trust assumptions or bespoke bridging interfaces.

• Verifiable correctness. Returned results must be accompanied by proof bundles that
allow the gateway contract to verify that off-chain execution was performed faithfully
and deterministically.

• Deterministic and replay-safe integration. Each request is uniquely identified, idem-
potent and safely sequenced, ensuring consistent state updates across chains.

• High throughput and asynchronous workflows. The messaging layer must support
concurrent requests, pipelined callbacks and scalable multi-chain operation.

To realise these goals, Oracle Services comprise four coordinated submodules:

1. Gateway Contracts (on-chain access layer),

9



2. Relayer Network (off-chain messaging and validation layer),

3. Callback & Proof Verification Logic (on-chain authenticity enforcement),

4. Asset Mapping & Settlement Interface (representation and settlement of engine-
native state across chains).

5.2 Request Lifecycle: From On-Chain Intent to Verified Execution
The end-to-end lifecycle linking an on-chain contract to the Trading Engine proceeds through
the following verifiable stages:

1. On-chain request initiation. A contract on chain X calls a gateway request() func-
tion (e.g., requestOpenPosition), which generates a unique requestId. The gate-
way emits an event encoding parameters, chain context and caller metadata.

2. Relayer event detection and provenance validation. The decentralised relayer net-
work monitors gateway events, verifies origin-chain metadata and optional light-client
proofs, and constructs a canonical request payload for off-chain execution.

3. Delivery to the Trading Engine. Relayers submit the validated request to the engine
through authenticated channels. The engine authenticates the message and inserts it
into its deterministic execution queue.

4. Engine execution and result generation. The Trading Engine processes the request,
matching, margining, funding, liquidating or settling as appropriate, and outputs a de-
terministic execution result and associated batch identifier.

5. Proof generation and attestation. Relayers collectively generate a proof bundle attest-
ing to the correctness of the engine result. This bundle may include threshold signatures,
TEE attestation metadata, or future ZK proofs generated from the engine’s deterministic
audit log.

6. Callback delivery to chain X. A relayer (or any permissionless actor) submits the
proof-backed result to the gateway’s callback() function, along with identifiers such
as requestId and batchId.

7. Gateway verification and statematerialisation. The gateway verifies the proof bun-
dle, enforces idempotency and replay protection, and applies the result on-chain, mint-
ing or transferring position NFTs, updating balances or notifying the invoking contract.

This lifecycle ensures that the Trading Engine can be invoked from any chain while main-
taining correctness, authenticity and deterministic reconciliation.

5.3 Gateway Contracts
Gateway contracts form the canonical on-chain interface to 128.trade. They expose a family
of deterministic functions that encode decentralised intent:

• request functions such as requestPlaceOrder, which allow smart contracts to ini-
tiate engine-side actions;

• callback functions such as onOrderResult, through which verifiable engine results
and proof bundles are delivered back on-chain.

The gateway contract enforces strict checks: correct request identifiers, replay-protection
via nonces or requestIds, verification of relayer signatures or threshold signatures, and (where
applicable) verification of state roots or proofs from the underlying bridge or light-client. This
design ensures that only authorised and valid results are applied on-chain.

10



5.4 Relayer Network
The decentralised relayer network forms the off-chain messaging and validation layer respon-
sible for transporting requests to the Trading Engine and returning authenticated results. Its
responsibilities include provenance verification, request canonicalisation, delivery to the en-
gine, and generation of cryptographic attestations that certify the correctness of the engine’s
deterministic execution.

• Event observation&provenance validation. Relayersmonitor gateway events across
supported chains, verify origin-chainmetadata, and (when available) validate light-client
or state-root proofs to ensure that the request originated from the correct chain and gate-
way.

• Canonical request construction. Relayers normalise request parameters, construct-
ing a canonical payload that the Trading Engine can authenticate and execute determin-
istically.

• Authenticated request delivery. Validated requests are forwarded to the Trading
Engine via authenticated channels. Once inside the engine, all requests—API or on-
chain—enter the same deterministic execution queue.

• Execution-proof generation. After the engine produces a deterministic result, re-
layers jointly generate an execution proof bundle that attests to correctness. The proof
bundle may be instantiated using multiple verification mechanisms:

– Threshold-signature attestation (e.g., M-of-N signatures certifying agreement on en-
gine output);

– TEE-based remote attestation (proving the result was generated by an audited en-
gine binary running in a secure enclave);

– Light-client provenance proofs (showing the request was included in the canonical
chain state);

– Zero-knowledge proofs (future extension), generated from the engine’s determinis-
tic audit log to prove state transitions without revealing internal data.

• Callback preparation. Equipped with a valid proof bundle, any relayer (or permission-
less actor) can construct and submit a callback transaction to the destination chain.

The design follows principles frommodern off-chain reporting networks such as Chainlink
OCR, but extends them: relayers here certify not just observed data, but the correctness of state
transitions performed by a high-performance deterministic execution engine.

5.5 Callback & Proof Verification Logic
Once a callback transaction carrying an execution proof bundle reaches the gateway contract,
verification proceeds entirely on-chain. This separation provides a clean security boundary:
relayers produce proofs; gateways verify them.

• Proof-bundle verification. The gateway verifies the cryptographic proof bundle at-
tached to the execution result. Supported proof types include:

– threshold-signature sets (certifying multi-relayer agreement),
– TEE attestation metadata (certifying the engine binary and execution environ-

ment),

11



– zero-knowledge proofs (certifying state-transition correctness directly from deter-
ministic logs).

• Request and batch integrity. The gateway checks the requestId, batchId, and
canonical payload fields to ensure the callback corresponds exactly to a previously issued
request.

• Replay protection & idempotency. State transitions are applied exactly once. Any
callback failing nonce or idempotency checks is rejected.

Upon successful verification, the gateway materialises the validated result on-chain—for
example, minting or updating position NFTs, transferring vault shares, or notifying the in-
voking contract. This ensures that on-chain state transitions faithfully reflect authenticated
deterministic execution of the Trading Engine, even in adversarial conditions.

5.6 Asset Mapping & Settlement Integration
The Oracle/Relayer layer also interacts with the asset-mapping system of 128.trade. For
example:

• Spot assets from various chains may be mapped into the engine as virtual liquidity end-
points; the gateway contract and relayer network ensure the transfer of asset-mapping
instructions and settlement notifications.

• Perpetual positions (represented as NFTs) may be created or transferred via callback
events, with proofs of execution delivered through the oracle network.

• Vault shares (ERC-20 tokens) may be minted on chain X after the trading engine ex-
ecutes a vault-subscription request; the relayer network ensures the correct state has
been achieved before the minting callback.

5.7 Safety and Liveness Guarantees
To ensure robust operation of the oracle/relayer subsystem in 128.trade, we design specific
mechanisms that address both safety (i.e., “bad things do not happen”) and liveness (i.e., “good
things eventually happen”) in the context of cross-chain request/response flows. In classical
distributed systems literature, safety and liveness are fundamental properties of protocols.

Fully Permissionless Callback Mechanism Even if the relayer set becomes unavailable
or incapacitated (for example by network faults, censorship or operator failure), users on any
chain can still complete the request-to-engine workflow and apply the result on-chain. Con-
cretely: when a smart contract on chain X submits a request() via the gateway contract, the
matching/trading engine executes the request and emits a signed or verifiable proof of execu-
tion (e.g., threshold-signature, ZK-proof or attested state root). A third-party user or contract
may then invoke the callback() on chain X by presenting the execution result and proof
directly, without relying on any designated relayer. This design ensures that funds and posi-
tions are not locked indefinitely due to relayer downtime: the safety property holds because
only valid proofs are accepted, and liveness is improved because any actor can progress the
callback.

Emergency Exit via Fraud-Proof Roll-up Escape Hatch To further guarantee liveness
and protect users in worst-case failures of the engine or the relayer network, we incorporate
an emergency escape mechanism akin to optimistic roll-up fraud-proof systems. When a user
has placed an order on chain X and the engine or relayer network fails to deliver a callback

12



within a predetermined challenge period, the user may initiate an on-chain “challenge” via the
gateway contract:

1. The user submits their requestId, evidence of submission (e.g., event log, timestamp)
and a proof that no valid callback has arrived within the window.

2. If the engine/relayer system does not supply a valid proof of execution within the chal-
lenge period, then the gateway contract allows the user towithdraw or reclaim funds/assets
through a fallback path.

Thismechanism ensures that liveness is preserved: honest userswill not have funds indefinitely
locked; and safety is preserved because the escape path is only triggered if the system fails to
deliver a valid execution proof, thereby avoiding unjustified exits.

Combined Security Guarantees

• Safety: Only authorised, correctly signed/attested results from the trading engine are
accepted. Replay attacks are prevented through unique requestId and batch identi-
fiers; signature schemes or proof verification ensure authenticity and non-tampering.

• Liveness: The permissionless callback path and the fraud-proof escapemechanism guar-
antee that, under benign conditions or worst-case failure conditions, users retain the
ability to complete their requests or withdraw their assets.

• Hybrid trust-minimisation: While relayers operate for performance and convenience,
trust assumptions are minimised. The design does not depend exclusively on a single
party or relayer set to sustain functionality.

In combination, these mechanisms extend the reliability of the oracle-relayer subsystem
beyond typical designs and align with best practices in oracle/liveness research (e.g., ensuring
freshness, fallback paths, decentralised relayers).

6 Applications and the New Design Space
The introduction of a smart-contract callable, high-performance trading engine opens a de-
sign space that has not previously existed in decentralised finance. Traditional DEXs such as
Hyperliquid and Aster expose liquidity but not programmable execution; CEXs expose exe-
cution but cannot be invoked by smart contracts; and isolated L2 order-book venues cannot
be composed with DeFi protocols. 128.trade transforms trading into a programmable prim-
itive that contracts can call directly, enabling new architectures in strategy automation, asset
management, derivatives, and multi-chain coordination.

6.1 Trading as a Programmable Primitive
128.trade elevates trading from a user-driven activity to a system-level operation accessible
by any smart contract. This shift introduces three fundamental changes:

• Contracts initiate trades, not only users. Trading actions become part of protocol
logic—automated, verifiable, and permissionless.

• Liquidity becomes an underlying resource. Protocols across chains access deep and
shared liquidity without fragmentation.

• Execution becomes programmable. Deterministic execution and verifiable callbacks
allow protocols to depend on off-chain trading as if it were on-chain computation.

13



6.2 Foundational Financial Primitives
128.trade provides a set offinancial execution primitives that function as “syscalls” for higher-
level protocols:

• Spot Execution Primitive. Smart contracts can place, cancel, or modify spot orders
using a full suite of exchange-grade order semantics: market orders, limit orders, stop-
loss and take-profit conditions, time-in-force parameters, and algorithmic order types
such as TWAP slicing or adaptive execution. These actions are processed through de-
terministic matching and settlement logic, enabling protocols to implement execution
behaviour that is impossible in AMMs, where liquidity curves constrain price formation
and order types are effectively non-expressive.

• Perpetual Execution Primitive. Contracts may open, close, or modify perpetual po-
sitions with margining, funding payments, and liquidation rules enforced by the en-
gine’s deterministic pipeline. The primitive allows protocols to construct programmable
leveraged exposures, hedges, rolling strategies, or delta-adjusted portfolios. Conditional
order types and automated position-management logic (e.g., stop-loss triggers, trailing
stops, or dynamic leverage modulation) can be fully encoded in on-chain strategy logic.

• Unified Margin & Subaccount Primitive. Smart contracts can manage multiple sub-
accounts, eachwith isolatedmargin, PnL, and liquidation boundaries. Subaccounts serve
as strategy containers: a protocol may create separate subaccounts for hedging, basis
trading, yield enhancement, or user-specific exposures. Because subaccounts can be
controlled programmatically, they enable portfolio-level reasoning—contracts can rebal-
ance exposures, shift margin between strategies, or execute multi-leg workflows across
chains while preserving risk isolation.

• Vault Subscription Primitive. Vaults or structured-product protocols may subscribe
to engine-side strategies and mint ERC-20 vault shares backed by deterministic execu-
tion. Strategies may include mean-reversion, grid strategies, delta-neutral or basis arbi-
trage, trend-following, or adaptive market regimes. Execution happens on the Trading
Engine, while vault logic, deposit, withdrawal, share accounting, and strategy param-
eters, remains fully on-chain. This primitive enables a new class of multi-chain asset
managers whose strategies rely on high-performance execution rather than AMM-based
heuristics.

• Asset Mapping Primitive. The Trading Engine exposes a universal asset-mapping
layer thatmaterialises any engine-native object, spot balances, perpetual positions, fund-
ing portfolios, vault shares, or entire subaccounts, as on-chain financial assets. These
representations may take the form of ERC-20, ERC-721, or ERC-1155 tokens, enabling
fungible exposures, position-specific ownership, or portfolio-level bundles. Oncemapped
on-chain, such assets can be transferred, collateralised, pledged, fractionalised, or inte-
grated into lending, derivatives, or structured-product protocols. In effect, 128.trade
transforms all tradable exposures into programmable financial primitives for the broader
DeFi stack.

Together, these primitives constitute a general-purpose financial execution layer: contracts
express intent, the engine performs deterministic trading, and assets become first-class pro-
grammable objects within the multi-chain DeFi ecosystem.

6.3 A New Paradigm of Composable DeFi Applications
By transforming trading into a contract-callable primitive, 128.trade does not simply expand
the existing DeFi design space—it enables a fundamentally new paradigm in which execution,

14



liquidity, risk transformation and asset representation become fully programmable. This sec-
tion outlines several application directions that illustrate how 128.trade interacts with the
broader DeFi ecosystem and creates new possibilities that were previously unattainable.

(1) Higher Capital Efficiency Through Universal Asset Mapping. Because any engine-
native object—spot balances, perpetual positions, vault shares, or even entire subaccounts—can
be materialised as on-chain assets, 128.trade enables unprecedented capital efficiency. Spot
exposures become ERC-20 tokens, perpetual positions become ERC-721 or ERC-1155 tokens,
and an entire subaccount may be represented as a portfolio-level asset capable of carrying
margin, PnL, and risk parameters. These mapped assets can be supplied to lending protocols,
deposited in AMMs, collateralised in derivatives platforms, or used as LP/ staking objects. All
tradable exposures become composable DeFi objects, allowing capital to simultaneously partic-
ipate in trading, collateralisation, yield strategies and cross-chain structured portfolios. This
breaks the long-standing divide between “execution capital” and “DeFi capital”, enabling a
unified and far more efficient financial ecosystem.

(2) A More Expressive and Efficient Trading System for DeFi. 128.trade supports
exchange-grade order semantics: market orders, limit orders, stop-loss and take-profit triggers,
time-in-force instructions, and algorithmic execution such as TWAP or adaptive slicing. Pro-
tocols can combine these order types to express complex behaviours spanning spot markets,
perpetuals, vault shares, and strategy-level exposures. Because all liquidity is consolidated
within a unified trading engine, applications can access deeper and more consistent liquidity
across chains, and DeFi aggregators can route orders into a single high-performance execu-
tion layer. This creates a radically more efficient trading environment compared to AMMs
or isolated order-book venues, enabling precision execution for strategies, vaults, funds and
automated agents.

(3) Improving andRedefiningExistingDeFi Protocols. As execution becomes programmable
and assets become universally composable, existing DeFi protocols can evolve far beyond their
current architectural constraints. The examples below illustrate how integrating 128.trade
transforms the behaviour, efficiency, and risk model of today’s core DeFi primitives.

• (3.1) TheEvolution ofAMMDEXs. AMMs such as Uniswap v4 can integrate 128.trade
through hooks to perform automated hedging on perpetual markets. An LP position that
would traditionally experience impermanent loss can dynamically open offsetting perp
positions, neutralising directional risk. AMMs thus evolve from passive liquidity curves
into hybrid AMM–CLOB systems with dramatically improved capital efficiency and risk-
adjusted returns.

• (3.2) Lending Protocols as Intelligent Risk-Management Banks. Borrow/lend sys-
tems like Aave can directly invoke programmable hedging or conditional execution on
the Trading Engine. Instead of relying solely on over-collateralisation and liquidators,
lending markets can place automated stop-loss orders, delta hedges, or conditional sells
to manage borrower risk—improving collateral efficiency, reducing systemic volatility,
and enabling real-time portfolio-level risk automation.

These examples represent only initial steps in how existingDeFi systemsmay be redesigned
when execution becomes a programmable primitive; many further integrations, across deriva-
tives, stablecoin systems, asset managers, and liquidity networks, remain unexplored.

(4) Entirely New Protocol Classes Enabled by Programmable Execution. Beyond im-
proving existing protocols, 128.trade enables wholly new categories of applications that

15



were previously impossible because no system combined high-performance execution with
smart-contract programmability. The examples below illustrate how new financial architec-
tures emerge once trading, asset representation, and cross-chain workflows all become pro-
grammable.

• (4.1) Fully On-Chain Structured Products and Autonomous Funds. Vaults become
fully on-chain hedge funds: strategy logic is encoded in smart contracts, execution is per-
formed deterministically by the Trading Engine, and vault shares are minted as ERC-20
tokens. Strategies such as mean-reversion, grid strategies, delta-neutral hedging, basis
trades, trend-following, and regime-adaptive models can all be implemented without
off-chain intermediaries. Every user can create their own fully on-chain fund, backed
by verifiable, deterministic execution.

• (4.2) On-Chain Autonomous Agents (AI or Algorithmic). AI agents, LLM-driven
traders, or algorithmic controllers can execute strategies, arbitrage across chains, man-
age vault portfolios, or rebalance structured products autonomously. Because execution
correctness is guaranteed by proof-backed callbacks, agents can safely manage signifi-
cant capital with deterministic guarantees. This marks the emergence of on-chain au-
tonomous traders and AI-powered financial DAOs, a protocol category previously impos-
sible due to the lack of programmable high-performance execution.

Together, these application directions illustrate a new DeFi paradigm: trading becomes
a universal execution primitive, assets become composable financial objects, and protocols
gain the ability to express complex, cross-chain trading logic with deterministic guarantees.
128.trade thus forms the execution backbone for a more unified, efficient and expressive
multi-chain financial ecosystem.

6.4 Why These Applications Were Previously Impossible
The design space unlocked by 128.trade has remained inaccessible in prior architectures
because the two dominant models in decentralised and centralised trading each lack a critical
capability.

(1) AMMsprovide programmability but lack expressive execution. AMMs can be com-
posed by smart contracts, but their financial expressivity is fundamentally limited:

• most AMMs cannot support perpetual futures or margining;

• order types such as limit orders, stop orders, or conditional execution are not natively
representable;

• liquidity is passive and cannot express dynamic strategy logic or risk management.
Thus, while AMMs are programmable, they cannot serve as a general-purpose execution sub-
strate for financial applications.

(2) CEXs and order-bookDEXs support rich execution but cannot be composed. Cen-
tralised exchanges and high-performance order-book DEXs offer the full range of financial
operations—spot, perpetuals, leverage, advanced order types—but:

• they remain isolated venues with no smart-contract callable interface;

• they cannot be invoked by DeFi protocols or integrated into on-chain workflows;

• their liquidity and execution cannot participate in cross-chain composability.
These systems provide execution richness but cannot act as infrastructure for decentralised
programmability.

16



A structural gap. For over a decade, programmable systems lacked expressive execution,
and expressive systems lacked programmability. As a result, an execution layer for DeFi—one
that contracts could call directly—did not exist.

How 128.trade resolves this. 128.trade is the first system to combine:

• the programmability and composability characteristic of on-chain primitives, and

• the rich execution semantics and performance characteristic of advanced order-book venues.

This unification allows trading to function as a programmable primitive for the first time,
enabling application classes that were structurally impossible in prior architectures.

7 Additional Features

7.1 DEX Aggregator
Liquidity in the decentralized-exchange (DEX) ecosystem is increasingly fragmented across
numerous independent venues and siloed asset pools. Traders face sub-optimal routing, ele-
vated slippage, and constrained asset coverage when relying on a single DEX. Recent research
confirms that decentralized-exchange aggregators play a crucial role in mitigating these inef-
ficiencies by intelligently routing trades across multiple sources and thereby improving exe-
cution quality.

In the context of 128.trade, we propose to embed a DEX aggregator feature directly
within the trading-engine side, complementing the core high-performance CLOB engine and
the cross-chain gateway infrastructure. This design enables the engine not only to serve its na-
tive liquidity, but also to interface with external DEXs (and even centralized-exchange order-
books) to improve overall trade execution, especially for large volumes, niche pairs or frag-
mented markets.

Architecture & Technical Design

• External liquidity integration: The engine exposes an interface to accept external
routing orders or sub-orders to other venues. From the engine’s viewpoint, these exter-
nal venues appear as additional “liquidity legs” that can be selected by the aggregator
logic when optimal.

• Smart-order routing (SOR) logic: The aggregator module analyses multiple trading
paths—including native engine liquidity and external venues—by evaluating depth, fee
structure, expected slippage, gas/settlement cost and chain context. It then splits or
directs orders along the optimal route.

• Secure routing execution: To ensure funds safety when interacting with external
venues, the aggregator feature utilises threshold ECDSA / multi-signature protocols for
control of funds dispatch to external venues. It may also leverage Trusted Execution
Environments (TEEs) and zkTLS-style proofs to guarantee that node-operators cannot ar-
bitrarily move assets. Research shows that dynamic threshold ECDSA architectures are
viable for custodial and routing infrastructure.

• Verification of external execution results: After routing and execution, the aggre-
gator receives proof or signed results from the external venue. These results are then
subject to integrity checks (signature thresholds, TEE attestations, optionally light-client
verified state roots) before the final settlement is applied on-chain or in the engine state.

17



• Composable pooling of liquidity: By incorporating external venues, 128.trade ef-
fectively becomes a virtual liquidity super-source, thereby allowing aggregators, routers
or smart-contracts on any chain to route into our engine and receive better execution
than any single siloed DEX.

7.2 Fund Management & Smart-Contract Governance
The market for algorithmic or strategy-based trading in DeFi remains significantly under-
served. Existing public funds or strategy products often employ relatively simple method-
ologies and provide limited transparency. At the same time, many hedge-fund-style offerings
remain opaque, suffer from weak gate-keeping (for example poor holdings disclosure, poten-
tial self-dealing), and are inaccessible to smaller investors. In the context of 128.trade, we
address these issues directly by embedding fund-management logic into smart-contracts and
introducing enforceable constraints that align manager incentives with investor protection.

Smart-Contract-Governed Fund Structures Within the 128.trade environment, fund cre-
ators deploy smart contracts that define the operational rules of each strategy or fund. Critical
parameters are encoded, including: deposit and withdrawal conditions, revenue-share and
performance-fee models, permissible asset classes and trading instruments (for example spot
assets, perpetual contracts), maximum position sizes or leverage, delta-neutral constraints (if
appropriate), and other risk-control rules. Because these mechanics are enforced on-chain, the
fund creator is unable to deviate from the defined rules. The governance logic therebymitigates
common risks such as self-dealing, fund drift or hidden holdings, and enhances transparency
and auditability for all participants.

Strategy Library and Tokenised Participation 128.trade also supports a built-in library
of trading strategies (for example: funding-rate arbitrage, price-spread trades, cross-DEX ar-
bitrage) which can be adopted directly by users or further customised by strategy authors.
Each fund or strategy issues tokenised shares (e.g., ERC-20 tokens) representing participation
in the strategy. Investors on any chain can subscribe, redeem or trade these tokens. The align-
ment is improved: strategy authors earn only under prescribed performance conditions, and
the smart-contract logic ensures that revenue-sharing and redemptions follow the pre-defined
rules.

Risk-Control, Transparency and Composability Smart-contract enforcement allows for
granular control: holdings limits, on-chain restrictions to mitigate front-running, predefined
strategy-scope limits, and continuous real-time visibility into fund state. This level of trans-
parency and governance is rare in traditional hedge-fund structures, but achievable in a DeFi-
native framework. Integrating with 128.trade’s cross-chain architecture, funds and strategies
become composable primitives: they can be embedded into other protocols, used as collateral,
or layered into structured products on any supported chain.

7.3 Privacy Protection
To safeguard both strategy confidentiality and user trust, 128.trade supports private transac-
tion flows combined with on-chain verifiable compliance. For example, trades can be routed
through dark-pool-style execution or private transaction pools (thus reducing MEV and front-
running exposure). Following execution, strategy details remain hidden, yet the smart con-
tracts verify compliance with predefined rules (via Trusted Execution Environments (TEEs)
or zero-knowledge proofs (ZKPs)). As a result, investors obtain full transparency into rule
enforcement, ensuring custody and execution integrity, while strategy providers retain their
proprietary edge with preserved privacy.

18



8 Conclusion
This whitepaper has presented 128.trade as a foundational infrastructure layer for DeFi: bridg-
ing high-performance trading engines with chain-agnostic smart-contract access, and enabling
composable liquidity, positions and fund strategies across multiple chains. With safety and
liveness guarantees built into its architecture, such as permissionless callbacks, threshold-
signed relayer results and fraud-proof escape hatches, 128.trade mitigates the fragmentation
and trust-bottlenecks of existing systems. By enabling any chain to access deep liquidity and
any asset or contract to participate in advanced markets, 128.trade is poised to become the
universal trading layer for the next generation of programmable finance.

19


